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components (Porhemmat et al. 2018). Determination of 
each component has been done using various methods, such 
as hydrological modeling, remote sensing, and geographic 
information system (GIS).

Hydrological models are able to simulate various hydro-
logical processes and using different hydrological models, 
studies have been conducted, some of which are mentioned. 
Mishra et al. (2007) simulated runoff and sediment on a daily 
and monthly scale in a small basin in India using the SWAT 
model. R2 and Nash-Sutcliffe efficiency coefficient (NSE) 
values for daily runoff in the model calibration period were 
0.93 and 0.70, respectively. For monthly runoff in the model 
calibration period, the values of these two coefficients were 
0.99. During the validation period, the R2 coefficient and 
NSE coefficient values were 0.78 and 0.60 for daily runoff 
and 0.92 and 0.88 for monthly runoff, respectively. Te Linde 
et al. (2008) compared the performance of two rainfall-run-
off models of hydrologiska byrans vattenavdelning (HBV) 
and semi-distributive variable infiltration capacity (VIC) in 
the Rhine catchment. To investigate the effect of climate 
change on the outflow of the basin, it was necessary to select 
the hydrological model with the best performance. The 
results showed that the conceptual semi-distributive model 
(HBV) performs better than the distributed land surface 

1 Introduction

Optimal management of water resources is being empha-
sized through application of new and efficient technolo-
gies in simulating water resources components and use of 
hydrological models, and application of methods to reduce 
water shortage stress in the demand sector. Sustainable 
management of water resources, especially in arid and semi-
arid regions, requires the determination of water balance 
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The present study analyzed sensitivity of flow parameters using SWAT and effect of climate change on surface water 
resources, considering uncertainty with Monte Carlo. For this purpose, output of nine-model related to fifth-climate 
change-report during baseline period 1971–2000 was weighted. Using Monte Carlo, 100 samples of probabilistic distri-
bution of basin temperature and rainfall were generated. LARS-WG model was used for downscaling, then temperature 
and precipitation were calculated under RCP2.6 and RCP8.5 for future periods 2040–2069 and 2070–2099. SWAT was 
calibrated using observational-data and the National Centers for Environmental Prediction (NCEP) Climate Forecast Sys-
tem Reanalysis (CFSR) (NCEP CFSR) global climate datasets and sensitivity of parameters affecting flow was analyzed. 
Results showed that observed-data had better performance than NCEP CFSR. Finally, future runoff was calculated under 
RCP2.6 and RCP8.5 for 2040–2069 and 2070–2099. Results showed that average annual runoff decreased by 84, 80, 82 
and 80%, for 2040–2069 (RCP2.6 and RCP8.5) and for 2070–2099 (RCP2.6 and RCP8.5) relative to baseline, respectively.
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model (VIC). Li and Zhang (2008) compared the perfor-
mance of distributive hydrological models for flood simula-
tion in the Yellow river sub-basins. The results showed that 
the three models used had the ability to simulate floods in 
the basin and could be used to predict floods in the basin. 
Among the three models used, the GTOPMODEL based 
GIS model showed the best performance in the simulations. 
Ghavidelfar et al. (2011) compared the performance of the 
quasi-distributed model ModClark and the lumped param-
eter model Clark. This study was performed for the Ran-
dan basin of semi-arid basins in the southwest of Tehran, 
because ModClark is a raster model and its output results 
were more acceptable in the calibration stage. The results 
showed that both models had acceptable results for rainfall-
runoff simulation in this basin. However, the quasi-dis-
tributed ModClark model showed better results due to the 
spatial distribution parameters. Oeurng et al. (2011) used 
the SWAT model in a large basin with an area of 110 square 
kilometers located in southwestern France to simulate runoff 
and sediment in this basin. The study results showed that the 
SWAT model was able to simulate runoff and sediment in 
large basins properly. Sommerlot et al. (2013) used a com-
parative study to compare the accuracy of three hydrologi-
cal models SWAT, high impact targeting (HIT), and revised 
universal soil loss equation (RUSLE2) in basin-scale hydro-
logical simulations with P-factor and R-factor statistics. The 
results showed that the SWAT model with P-factor equal to 
0.51 and R-factor equal to 0.31 had the highest accuracy 
amongst the three models. Zuo et al. (2016) investigated the 
effects of climate change and land use on runoff and sedi-
ment in the Huangfuchuan river basin in China using the 
SWAT model. The results showed a decrease in annual run-
off and sediment in this basin due to changes in rainfall and 
temperature and land use changes. This decrease in runoff 
and sediment in the upstream area of the river was much 
more than downstream.  Moghadam et al. (2023b) com-
pared data mining, lumped, and distributed models to assess 
climate change effects on surface water resources in Iran’s 
Sanjabi basin. They used 17 climate models and evaluated 
their performance criteria. The CNRM-CM5 model outper-
formed others in rainfall, average temperature, and mini-
mum temperature projections, while GFDL-CM3 excelled 
in maximum temperature projections. LARS-WG was the 
most predictive downscaling method. Among the models 
tested for future runoff projection, IHACRES performed 
best, showing a reduction in runoff under all emission sce-
narios. Notably, runoff decreased by 42.0% and 44.3% in 
the periods 2040–2069 and 2070–2099, respectively, under 
the RCP8.5 scenario.

Also, temporal and spatial changes of precipitation in the 
hydrological models using reanalysis climate datasets are 
of interest to researchers. Studies have shown that climatic 

data has been widely used in the SWAT model. Among these 
researches, the following can be mentioned. Dile and Srini-
vasan (2014) by examining NCEP CFSR data and compar-
ing them with observational data in different and large areas 
in the Nile catchment area whose observational data was 
low density, concluded that there was no significant differ-
ence between these data. Fuka et al. (2014) compared NCEP 
CFSR data and observations. This study concluded that the 
NCEP CFSR data performed better than the observational 
data in simulating river flow. Monteiro et al. (2016) com-
pared ERA and NCEP CFSR databases with observational 
data in a simulation of a basin in Brazil. The results showed 
that the combination of these three databases could improve 
the simulation accuracy well.

Also, marked changes in temperature and precipitation 
patterns greatly impact the quantity and quality of water 
resources. So, runoff estimation and evaluating water 
resources under climate change and for future periods are 
necessary.

Investigating the impact of climate change and land use 
in the Hoeya River basin in South Korea under RCP green-
house gas scenarios, Kim et al. (2013) showed that although 
the impact of land-use change was less than climate change, 
these changes can increase the seasonal diversity in the river 
basin runoff due to climate change. Park et al. (2015) pre-
dicted drought in South Korea in the period (2014–2100) 
under RCP climate change scenarios and showed that the 
most severe drought throughout the 87-year period with the 
minimum effective drought index (EDI) of − 3.54 with a 
duration of 560 days would occur in the period 2039–2041. 
Su et al. (2015) evaluated possible changes in precipitation 
and flow in the Songhuajiang River basin in China by con-
sidering ECHAM5 climatic conditions under A2, B1 and 
A1B scenarios and CMPI5 models under RCP2.6, RCP4.5 
and RCP8.5 scenarios in the period 2011–2050. They 
showed that precipitation under RCP scenarios increased 
more than under SRES scenarios. Santini and Paola (2015) 
examined changes in the discharge of the Mad River in 
New York using current and future climate zoning under the 
CMCC-CM model and the RCP4.5 and RCP8.5 scenarios, 
and showed that the climate of cold and polar regions with 
a moderate and increasing trend was becoming a dry and 
tropical climate.  Moghadam et al. (2023a) studied climate 
change impacts on surface water and groundwater usage in 
Iran’s Khorramabad basin. They analyzed temperature and 
rainfall data under different emission scenarios, projecting 
decreased water resources and groundwater levels. Using a 
conjunctive operation model, they assessed potential water 
supply deficits, emphasizing the need for adaptive manage-
ment strategies amidst changing climatic conditions. Kal-
hori et al. (2023) developed the Multi-Objective Invasive 
Weed Optimization Algorithm (MOIWOA) for optimizing 
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water allocation in the face of climate change. They veri-
fied the algorithm’s efficacy through benchmark functions, 
comparing its results with those from MOPSO and NSGA-
II. Subsequently, they applied MOIWOA to allocate water 
for drinking, industrial, and agricultural purposes, aiming 
to maximize the reliability and resiliency indexes of water 
supply systems. The model effectively reduced failure peri-
ods and allocated water efficiently, particularly during hot 
months. Under the RCP85 climate change scenario for 
2070–2099, they observed an 11% increase in reliability 
and a 66% increase in resiliency. The researchers employed 
Gray Relationship Analysis (GRA) to select the best solu-
tion from the Pareto solutions and prioritize multi-objective 
solutions based on Gray Relational Grade (GRG).

On the other hand, climate models have uncertainty, 
which has been conducted in different studies. Prudhomme 
et al. (2003) described a methodology for quantifying 
uncertainties of climate change impacts. Uncertainties were 
calculated with a set of 25,000 climate scenarios randomly 
generated by Monte Carlo simulation, and employing sev-
eral GCMs. Moghadam et al. (2019) investigated the effect 
of climate change on runoff of the Khorramabad river basin 
in Lorestan province. To estimate future temperature and 
precipitation, HadCM3 and CGCM2 were selected as the 
best models based on the performance criteria of coefficient 
of determination (R2), root mean square error (RMSE) and 
mean absolute error (MAE). The results of Atmosphere-
Ocean General Circulation Models (AOGCM) showed an 
increase in temperature and a decrease in rainfall in the 
future. Then, using the Monte Carlo method, 100 samples 
of the monthly probabilistic distribution of temperature and 
rainfall were generated based on weighting. After calibra-
tion of the IHACRES model, climatic data from (1) five 
AOGCM models and (2) the developed Monte Carlo model 
were applied to the IHACRES model and the river flow 
was simulated in the future. Kalhori et al. (2022) investi-
gated the uncertainty of Third Assessment Report (TAR) 
and Fifth Assessment Report (AR5) climate models on run-
off in Iran’s Khorramabad basin for future periods. Using 
TAR and AR5 models under different emission scenarios, 
they predicted future temperature and rainfall with down-
scaling methods. Results showed decreased runoff in most 
scenarios, particularly with the IHACRES model, indicating 
potential challenges for water resource management under 
climate change. The study underscores the importance of 
considering model uncertainty in runoff projections for 
effective planning and adaptation strategies.

In order to accurately model runoff flow in catchments, 
it is necessary to calibrate the parameters affecting runoff 
production and evaluate the importance and sensitivity of 
these parameters. Therefore, in the present study, 22 flow 
parameters of the SWAT model in the baseline period of 

1971–2000 are sensitized using the sensitivity process of 
the SWAT model using the SUFI2 algorithm in the Sanjabi 
catchment (located in Kermanshah province). Also, appro-
priate and accurate input data is needed to increase the mod-
eling’s accuracy. It is noteworthy to say that due to the effect 
of climate change on various climatic parameters and water 
resources, forecasting future temperature and precipitation 
and modeling future runoff with a suitable hydrological 
model for future planning by water resources decision-
makers is essential. Also, considering the uncertainties of 
different climate scenario models can help make future fore-
casts more accurate. For this purpose, in the present study, 
the observational data and the NCEP CFSR global database 
are compared. In addition, future runoff under RCP2.6 and 
RCP8.5 scenarios, which have the lowest and highest car-
bon dioxide concentrations by 2100, respectively, in the 
periods (2040–2069) and (2070–2099) is calculated using 
the developed Monte Carlo model. It should be considered 
that, in this paper, for the first time sensitivity analysis of 
streamflow parameters has been conducted with the SWAT 
model calibrated by observational data and NCEP CFSR 
global reanalysis climate datasets and assessment future 
runoff with the developed Monte Carlo Model at the same 
time.

In this study, we aim to bridge existing gaps in hydro-
logical research by integrating multiple key components 
that have been addressed separately in previous studies. 
Specifically, we conduct a sensitivity analysis of streamflow 
parameters with the SWAT model, calibrated using observa-
tional data and NCEP CFSR global reanalysis climate data-
sets. Additionally, we assess future runoff using a developed 
Monte Carlo Model. To the best of our knowledge, this is 
the first attempt to simultaneously conduct sensitivity anal-
ysis and future runoff assessment while integrating these 
diverse components. By considering the interplay between 
hydrological modeling, climate change effects, and uncer-
tainty assessment, our study provides valuable insights 
for informing water resources management decisions in a 
changing climate.

2 Methodology

The methodology entailed determining the geographical 
location of the region; identifying climate scenarios and 
emission scenarios; developing a Monte Carlo model using 
9 AOGCM models; downscaling of data from Monte Carlo 
model using LARS-WG model; analyzing the sensitivity of 
22 parameters of SWAT model; comparing observational 
data and NCEP data; and calculating future runoff under 
two emission scenarios RCP2.6 and RCP8.5 for two periods 
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2.2 Future climate scenarios

Future climate scenarios were created with the use of climatic 
variables simulated by atmospheric-ocean coupled models 
or global climate models (GCM) (Dubrovsky 1996). These 
models are based on physical laws expressed by mathemati-
cal relationships (Mitchell 2003; Wilby and Harris 2006). In 
this study, the outputs of nine AOGCM models, including 
CanESM2, CNRM-CM5, GFDL-CM3, GISS-E2-H, GISS-
E2-R, MIROC5, MIROC-ESM, MIROC-ESM-CHEM and 
MPI-ESM-LR were used.

2.3 Emission scenarios

A non-climatic scenario contains information on the socio-
economic status and emissions of greenhouse gases in 
the Earth’s atmosphere, also known as the emission sce-
nario (IPCC-TGCIA 1999). The present study used the 
fifth assessment report (AR5), which uses RCP scenarios. 
New emission scenarios are based on the surface forcing 
radiative by 2100. With the development of greenhouse 
gas emission scenarios by the intergovernmental panel on 
climate change (IPCC), atmospheric circulation models 
with different emission hypotheses have been developed to 
determine the climatic conditions of the coming decades. In 
this study, two scenarios, named RCP2.6 and RCP8.5, were 
used. In RCP2.6, which is the lowest RCP, the total forc-
ing radiative will reach its peak of 3 watts per square meter 

2069 − 2040 and 2099 − 2070. Each of these steps is dis-
cussed below.

2.1 Location of study area

Sanjabi catchment, with an area of 1230 square kilome-
ters, is one of the Karkheh sub-basins in the northwest of 
Qarahsu River basin with coordinates of 46 × 40 east lon-
gitude and 34 × 33 north latitude in Kermanshah province. 
The main river in this basin is the Merek River. Figure 1 
shows the location of the Sanjabi catchment in Iran and dif-
ferent elevational areas.

Monthly runoff data from Doab Merek and Qarahsu 
River hydrometric stations as well as rainfall, temperature 
and other daily meteorological data of selected meteorologi-
cal and synoptic stations in the basin were collected. The 
stations used in this study are given in Table 1.

Table 1 Specifications of meteorological stations located in the study 
area
Number Station name Elevation (m) Type of station
1 Doab Merek 1339 Hydrometric
2 Gahvareh 1520 Rain gauge
3 Nahrabi 1490 Rain gauge
4 Ravansar 1363 Synoptic
5 Kermanshah 1318 Rain gauge
6 Javanrood 1375 Rain gauge

Fig. 1 Location of the study area in Iran and Kermanshah province
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by subtracting the mean values from the observed values 
were used in the temporal autocorrelation analysis of mini-
mum and maximum data. Analysis of the amount of daily 
radiation in each place showed that the normal distribu-
tion of daily radiation in a given climate was inappropriate. 
The amount of daily radiation on wet and dry days varied 
significantly.

Therefore, separating the semi-experimental distribution 
was used to distribute radiation on wet and dry days. Radia-
tion was modeled separately from temperature. Therefore, 
the inputs of this model were daily climatic statistics, includ-
ing rainfall, temperature and radiation, and the outputs of 
this model included minimum temperature, maximum tem-
perature, average monthly and annual temperature, precipi-
tation and radiation values (Semenov and Barrow 2002).

Data production by the model was done in three stages: 
calibration, evaluation, and creation of meteorological data. 
The data of the general atmospheric circulation model, 
including precipitation, minimum temperature, maximum 
temperature, and radiation, were extracted daily. For each 
atmospheric global climate model and under each scenario, 
the LARS-WG model was implemented. To run the LARS-
WG model, in addition to the developed scenario for each 
computing network, there was a need for a file character-
izing the past climate behavior of the stations located within 
that network. According to the model mechanism, first, 
using the monthly data production scenario, which included 
the basic climate behavior, all monthly data were calculated 
according to Eq. (1):

Ffut = Fobs + (Ffut
GCM − Fbase

GCM ) (1)

in which Ffut = the future data, Fobs = the observational 
data, Ffut

GCM
= the future GCM model data, and Fbase

GCM = 
the GCM model data in the base state. Then, by keeping 
the average constant, their standard deviation was changed 
according to Eq. (2):

STDfut =
STDobs

STDGCM
base

× STDGCM
fut  (2)

2.5 Monte Carlo approach to uncertainty analysis

One of important uncertainties related to climate change is 
the uncertainty related to different climate models. These 
models do not get the same results from simulating simi-
lar climatic variables in the region due to different methods 
in downscaling, such as rainfall. Monte Carlo simulation 
methods are used to analyze the effect of different uncertain-
ties on the system model output. Due to the uncertainty in 
temperature and rainfall climate change scenarios resulting 

by 2050, followed by a decreasing trend, with the lowest 
concentration of carbon dioxide, and the RCP8.5 scenario is 
consistently the increase in radiative forcing by the end of 
the 21st century and is approximately 8.5 watts per square 
meter, and RCP8.5 has the highest amount of carbon diox-
ide (Van Vuuren et al. 2011).

2.4 Downscaling

GCM models are currently the only tools that simulate the 
effects of global climate change on atmospheric elements in 
large spatial networks. These models simulate atmospheric 
elements at grids between 150 × 150 and 250 × 250 square 
kilometers (Fung et al. 2011). For this reason, these mod-
els cannot consider the effect of local conditions, such as 
topography, land cover, etc., on atmospheric variables, such 
as temperature, precipitation, etc. (Prudhomme et al. 2002). 
Therefore, the LARS-WG model was employed to down-
scale the data of global climate models to the local scale 
(Fung et al. 2011). In the present study, for downscaling. 
The LARS-WG model is a stochastic weather data genera-
tor that is used to generate precipitation, radiation, and max-
imum and minimum daily temperatures at a station under 
current and future climate conditions.

The first version of the LARS-WG was developed by 
Rasco et al. (1991) in Budapest, Hungary, as a tool for sta-
tistical downscaling. The LARS-WG model uses complex 
statistical distributions to model meteorological variables, 
such as the length of dry and wet periods, daily precipita-
tion, and radiation. Rainfall simulation was modeled based 
on wet and dry days, while wet days are days when rainfall 
is more than zero millimeter. The length of each series was 
randomly selected each month. To determine the distribu-
tions, the observed data in the previous period were also 
placed in the same month. To calculate dry days, the amount 
of rainfall was derived from a semi-experimental distribu-
tion of rainfall for a particular month that did not depend 
on wet series or the amount of rainfall on the previous day 
(Harmel et al. 2002). Fourier series was used to estimate 
temperature. The minimum and maximum daily tempera-
tures were modeled as random processes with the mean and 
deviation of daily criteria that depended on the wet or dry 
conditions of the day. The third-order Fourier series was 
used to simulate the mean and standard deviation of the sea-
sonal temperature with a normal distribution. The simulated 
Fourier series for the mean values was proportional to the 
mean of observed values. The monitored values for each 
month had been adjusted to estimate the average daily stan-
dard deviation before adjusting the values of the February 
series deviation.

Simply put, both of these were considered constant for 
wet and dry values over a year. The residual values obtained 
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Monte Carlo sample represented a plausible climate sce-
nario based on the range of variability among GCM outputs.
 
• Utilization of Monte Carlo samples in LARS-WG model

The Monte Carlo samples served as inputs for the LARS-
WG model, a stochastic weather data generator used for 
downscaling GCM outputs to the local scale. The LARS-
WG model incorporates complex statistical distributions 
to simulate meteorological variables such as precipitation, 
radiation, and daily maximum and minimum temperatures 
under current and future climate conditions.
 
• Consistent downscaling process

It’s essential to note that the downscaling process was 
conducted consistently across different GCM models and 
emission scenarios. While the LARS-WG model was imple-
mented separately for each GCM model and emission sce-
nario combination, the methodology for generating Monte 
Carlo samples remained consistent throughout the analysis. 
This ensured that the downscaling process adequately repre-
sented the uncertainty inherent in GCM projections, regard-
less of the specific GCM model or emission scenario.

By employing this rigorous downscaling methodology, 
we aimed to provide robust and reliable projections of future 
temperature and precipitation at the local scale, facilitating 
a comprehensive assessment of climate change impacts on 
surface water resources.

3.1 Rainfall-runoff simulation

In this study, the SWAT model was used to analyze the 
sensitivity of flow parameters and monthly rainfall-runoff 
simulation.
 
• SWAT model

The SWAT model, developed by Arnold et al. (1998), has 
demonstrated its efficacy in evaluating water resource and 
nonpoint-source pollution issues across various scales and 
environmental contexts worldwide.

This model is a physically-based and distributed param-
eter model developed to predict the effects of land use 
change, climate change, and management in large and 
complex catchments (Verbeeten and Barendregt 2007). The 
model operates at a daily time step and instead of using 
regression equations to describe the relationship between 
input and output variables, it provides specific information 
about air, soil, topography, land use, and land cover in the 
basin. SWAT is a continuous-time, deterministic, spatially 
distributed simulator of watershed-scale hydrology. It also 
provides modules for the simulation of sediment, nutrients, 
and pesticides in the watershed (Schuo and Abbaspour 
2007; Yang et al. 2017).

from AOGCM models and under different scenarios, runoff 
from a single temperature and rainfall climate change sce-
nario cannot represent the entire range of runoff. Therefore, 
it is necessary to select a sample from the unlimited num-
ber of climate change scenarios, temperature, and rainfall, 
and consider the probabilistic distribution for each of the 
samples and study their effect on the basin runoff.

If the symmetrical distribution is accepted for the tem-
perature and rainfall climate change scenario, the aver-
age range of these scenarios will have the most significant 
impact on runoff. This logic is indicative of the weighting 
of AOGCM models. In this study, the K-Nearest-Neighbor 
(KNN) method was used. In this method, AOGCM models 
were weighted, based on the difference between the mean 
of climatic variables simulated in the base period from the 
mean of observed data:

Wm,i =

1
SOm,i∑
I
i=1

1
SOm,i

 (3)

in which SOa,i = the difference between the mean of cli-
matic variables (temperature and precipitation) simulated in 
the baseline period for model i and the long-term mean of 
month m from the mean of observational data, Wm,i = the 
weight of each model i related to the long-term average of 
month m, I = the total number of models (in the present 
study I = 9) (Moghadam et al. 2019; Ashofteh et al. 2015).

With the help of SIMLAB software (Giglioli and Saltelli 
2003), using the Monte Carlo method and producing 100 
samples, the effect of uncertainty of AOGCM models on 
river runoff was evaluated.

3 Enhanced downscaling methodology

 
• Downscaling procedure

In this section, we provide a detailed overview of the 
downscaling methodology employed in our study, focusing 
on how Monte Carlo samples were utilized as inputs for the 
LARS-WG model and how the downscaling process was 
conducted consistently across different GCM models and 
emission scenarios.
 
• Generation of Monte Carlo samples

To capture the uncertainty associated with different 
GCM projections, we employed a Monte Carlo simulation 
approach. This involved generating 100 samples of proba-
bilistic distributions of basin temperature and rainfall for 
each GCM model and emission scenario combination. Each 
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SWAT software, such as SUFI2, PSO, GLUE and ParaSol. 
In the present study, the SUFI2 algorithm was used, one of 
the most widely used algorithms in SWAT software.
 
• SUFI2 algorithm

This algorithm defines the difference between observa-
tional and simulated data (Rostamian et al. 2008). SWAT-
CUP provides the flexibility to employ various algorithms 
during the calibration or validation process. In this study, 
the SUFI-2 algorithm (Abbaspour et al. 2004), a semi-auto-
mated method utilized for model calibration, validation, 
sensitivity, and uncertainty analysis, was employed. In the 
SUFI2 algorithm, measurement of uncertainty in modeling 
includes uncertainty in inputs, conceptual model, and fac-
tors, and is evaluated by the p-factor criterion, which indi-
cates the percentage of measured data that is within the 95% 
prediction uncertainty (95 PPU). (For a detailed explanation 
of the SUFI-2 algorithm, including formulas and method-
ologies, refer to Abbaspour et al. (2004) and Abbaspour et 
al. (2007).

In the SUFI2 algorithm, it is assumed that each unknown 
parameter is uniformly distributed over a domain with a cer-
tain uncertainty. It should be noted that in both methods, the 
degree of uncertainty is calculated based on p-factor and 
r-factor (Abbaspour et al. 2004, 2007).

The objective function used in SWAT-CUP for model 
evaluation is the Nash Sutcliffe Efficiency (NSE). The NSE 
measures how well the simulated data match the observed 
data, with values ranging from -∞ to 1, where 1 indicates a 
perfect match. For further details on NSE and its calculation, 
refer to Nash and Sutcliffe (1970).

The model divides the basins into sub-basins, each of 
which is treated as a single unit. Sub-basins are also sub-
divided into hydrologic response units (HRU), sections of 
sub-basins with the same digital elevation, land use, and soil 
properties. It uses the modified curve number method of the 
U.S. soil conservation service (SCS) or the Green and Ampt 
infiltration method to calculate surface runoff for each HRU.

The SWAT model provides users with a basin descrip-
tion tool that automatically describes the catchment based 
on the DEM. It needs to be calibrated and validated for the 
study area to ensure that its parameters are representative of 
the study area. The hydrology cycle is simulated using the 
hydrological balance Eq. (4) (Mengistu 2009):

∆ sw =
∑

t
i=1(Rday −Qsurf − Ea −Wseep −Qgw) (4)

in which ∆ sw= the change in water stored in the soil, Rday

= the rainfall, Qsurf = the amount of surface runoff, Ea  = 
the real evaporation and transpiration, Wseep  = the amount 
of water infiltrated into the unsaturated area of the soil, and 
Qgw = the amount of groundwater flow (which joins the 
river, all in millimeters and on a daily time scale).

This model has several parameters due to its complexity, 
distribution, and the most effective factors in the rainfall-
runoff process. Some of the most important parameters 
required for modeling are: (1) important parameters in 
simulating the snowmelt process, (2) important parameters 
in the characteristics of rivers, (3) effective parameters in 
determining surface runoff, (4) parameters used to define 
and identify the status of hydrological units, and (5) effec-
tive parameters in simulating groundwater flow.

In order to optimize the parameters of the region and 
determine the range of changes as well as their optimal 
value and also to analyze the sensitivity of parameters 
affecting flow, there are different optimization algorithms in 

Fig. 2 Comparison of Simulation 
average monthly precipitation 
with AOGCM models and obser-
vational values in the baseline 
period 1971–2000
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in most months. According to Fig. 3, it can be seen that in 
winter, spring and late autumn, all models simulated higher 
maximum temperatures than the observed values, and from 
September to December, some models simulated maximum 
temperatures lower than observed values. It can also be 
seen that the CanESM2 model had simulated the maximum 
temperature in winter, spring and early summer with a large 
difference compared to other models, but this difference 
was not seen in other months. According to Fig. 4, it can be 
seen that all models simulated higher minimum tempera-
tures than the observed values in all seasons of the year, 
and only in January and December, the CNRM-CM5 model 
had modeled the minimum temperature below the observed 
values. It is also noteworthy that in the winter and spring 
seasons, the CanESM2 model and in the other two seasons 
(summer and autumn), the MPI-ESM-LR model simulated 
the minimum temperature more than all the models.

4 Results and discussion

4.1 Climatic scenario

First, using the output of 9 AOGCM models related to 
the fifth IPCC report, including CanESM2, CNRM-CM5, 
GFDL-CM3, GISS-E2-H, GISS-E2-R, MIROC5, MIROC-
ESM, MIROC-ESM-CHEM, and MPI-ESM LR, the mod-
eled values of precipitation, maximum temperature, and 
minimum temperature were compared with observed values 
in the baseline period (1971–2000) and results are presented 
in Figs. 2, 3 and 4. According to Fig. 2, it can be seen that all 
models from late summer to early summer had modeled less 
rainfall than the observed values, and only in February and 
May, more rainfall than the observed values was reported 
by the CNRM-CM5 model. Comparing the models, it can 
be seen that the CNRM-CM5 model had the highest and the 
CanESM2 and MPI-ESM-LR models had the lowest rainfall 

Fig. 4 Comparison of Simulation 
average monthly minimum tem-
perature with AOGCM models 
and observational values in the 
baseline period 1971–2000

 

Fig. 3 Comparison of Simulation 
average monthly maximum tem-
perature with AOGCM models 
and observational values in the 
baseline period 1971–2000
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the nine AOGCM models under two scenarios: RCP2.6 
and RCP8.5 and two periods 2040–2069 and 2070–2099, 
as well as the weight of each model for each month (long-
term average) relative to the observed values. The weighted 

4.2 Monte Carlo simulation

To use the SIMLAB model and calculate the uncertainty 
using the Monte Carlo method, it was necessary to specify 
the temperature and rainfall climate change scenarios for 

Fig. 6 Models weighing of maxi-
mum temperature
 

Fig. 5 Models weighing of 
precipitation
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values are shown in Figs. 8 and 9, and 10. As shown in 
Figs. 8 and 9, and 10, future precipitation in both scenarios 
RCP2.6 and RCP8.5 and in the future periods 2040–2069 

values for precipitation, maximum temperature, and mini-
mum temperature are presented in Figs. 5, 6 and 7.

The higher the weight of the model, the greater is the 
effect of that model on the climatic parameter (temperature 
or rainfall). According to Figs. 5, 6 and 7, it can be seen 
that CNRM-CM5 and MIROC-ESM models had the highest 
and lowest weights for precipitation, respectively. For maxi-
mum temperature, these values we are for GFDL-CM3 and 
GISS-E2-H models, respectively. Regarding the minimum 
temperature, the CNRM-CM5 model had the most effect 
and the MPI-ESM-LR model had the least effect.

After weighting the models, the monthly probabilistic 
distribution functions of temperature and rainfall climate 
change scenarios were calculated. Finally, using the Monte 
Carlo simulation method and SIMLAB software, 100 sam-
ples of temperature and rainfall climate change scenarios 
were extracted from each probabilistic scattering function. 
Subsequently, 100 monthly time series of temperature and 
rainfall were produced.

4.3 Calculation of climate change scenarios in 
future periods

After calculating the temperature and rainfall climate change 
scenarios by Monte Carlo model, the LARS-WG model 
was used for downscaling and calculating future tempera-
ture and precipitation under two scenarios of RCP2.6 and 
RCP8.5 and the future periods 2040–2069 and 2070–2099. 
The amounts of calculated values relative to the observed 

Fig. 8 Average monthly precipitation in the next two periods (2040–
2069) and (2070–2099) for scenario (a) RCP2.6, (b) RCP8.5

 

Fig. 7 Models weighing of mini-
mum temperature
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the basin in the 30-year period 1971–2000 were entered 
into the model. After introducing the required information, 
considering the monthly scale of 1971, 1972, and 1973 as 
Warm-Up, the SWAT2012 model was implemented in Arc-
GIS10.2 software with a monthly time step. Given that the 
initial values of some basin properties, such as soil chemical 
composition, may not be available, the SWAT model in the 
Warm-Up period can stabilize or calculate these values.

After each run of the SWAT model, for each simula-
tion, outputs, including runoff components, subsurface 
flow, groundwater storage, etc., were obtained as a text file 
containing information. This text file was stored in folders 
called TxtIntOut. By connecting this folder to the SWAT-
CUP software and selecting the algorithm (in this research, 
SUFI2 algorithm), 22 effective parameters in the flow in the 
statistical period of 1974–1991 were calibrated. The valida-
tion period was 1992–2000.

The SWAT model was calibrated once with observational 
data and once with NCEP CFSR global database. The vali-
dation and calibration results of the SWAT model with both 
observational data and NCEP CFSR global database are 
shown in Tables 2 and 3 and the river flow time series for 
the calibration and validation periods are shown in Figs. 11 
and 12, respectively. The higher the R2 and the lower the 

and 2070–2099 would be significantly reduced compared to 
the observed values in all months. Regarding the maximum 
temperature, it was observed in both scenarios RCP2.6 and 
RCP8.5 and in the future periods 2040–2069 and 2070–
2099 from late autumn to late spring, the maximum tem-
perature would increase compared to the observed values 
and this rate would decrease in summer. Regarding the min-
imum temperature, it can be said that in both future periods 
and in both RCP2.6 and RCP8.5 scenarios, there will be an 
increase in the minimum temperature in all months except 
August and September.

4.4 Calibration and validation results for SWAT 
models

Information about each of the soils and land uses in the San-
jabi basin was manually entered into the SWAT model data-
base. By combining three digital elevation maps (DEM), 
soil and land use together and slope classification into five 
floors, HRUs were determined in the study basin. Slope 
classification was done in five categories: 0-10.66, 10.66–
21.33, 21.33–31.99, 31.99–42.66 and 42.66–53.33 degrees.

In the SWAT model, 33 sub-basins and 260 HRUs were 
delineated in the Sanjabi basin. Then, daily rainfall and the 
maximum and minimum daily temperatures of stations near 

Fig. 10 The average monthly minimum temperature in the next two 
periods (2040–2069) and (2070–2099) for scenario (a) RCP2.6, (b) 
RCP8.5

 

Fig. 9 Average monthly maximum temperature in the next two periods 
(2040–2069) and (2070–2099) for scenario (a) RCP2.6, (b) RCP8.5
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of these parameters are given in Table 4 which shows the 
range of variations as well as the optimal values for the 
various parameters affecting the region. In fact, the optimal 
value of each parameter was only based on the improve-
ment of the objective function, and the changes of different 
parameters were separate from each other and had no effect 
on each other. In other words, to determine the sensitivity 
of each parameter, by changing its value and keeping the 
values of other parameters constant, the objective functions 
was examined and this process was repeated for all param-
eters. Finally, the parameters which had the greatest effect 
on the objective function were identified as the most sensi-
tive parameters.

To analyze the sensitivity of parameters affecting flow, 
two parameters t-Stat and P-Value were used. Thus, the 
lower the P-value and the higher the t-Stat value, the greater 
the parameter’s effect on flow. In Table 5; Fig. 13, the desired 
parameters (their effect from lowest to highest, respectively) 
are given with the t-Stat and P-Value values.

According to Table 5; Fig. 13, it was observed that the 
parameters CN2 (initial SCS curve number for medium 
humidity conditions) and SFTMP (snowfall temperature 
(degrees Celsius)) which had the highest t-Stat value and 
the lowest P-value, were the most effective parameters. 
RCHRG_DP (shallow to deep aquifer transfer coefficient) 
and PLAPS (temperature elevation gradient) parameters, 

error, the better was the model performance. PBIAS (Per-
cent Bias) was calculated to assess the average tendency of 
the modeled data compared to the observed data. A posi-
tive PBIAS indicates an overestimation, while a negative 
PBIAS indicates an underestimation of the modeled runoff. 
According to the calibration results of the SWAT model 
with both observational data and the NCEP CFSR global 
database, it can be seen that in general, the efficiency of 
the SWAT model with the observational data had a good 
performance, but the performance of the SWAT model with 
the NCEP CFSR global database was not satisfactory. The 
parameters used in the calibration and the optimal values 

Table 2 SWAT model performance criteria with observational data
Time period R2

(%)
RMSE
(m3/s)

MAE
(m3/s)

NSE
(Dimensionless)

PBIAS
(%)

1974–1991 
(Calibration)

63 57 3 0.6 0.05

1992–2000 
(Verification)

57 5 3 0.5 0.09

Table 3 SWAT model performance criteria with NCEP CFSR global 
database
Time period R2

(%)
RMSE
(m3/s)

MAE
(m3/s)

NSE
(Dimensionless)

PBIAS
(%)

1974–1991 
(Calibration)

29 12 9 -0.9 -1.04

1992–2000 
(Verification)

25 16 8 -3.9 -0.99

Fig. 12 Comparison of simulated and observed runoff by SWAT model 
with NCEP CFSR global database in the period (a) calibration (1974–
1991) and (b) verification (1992–2000)

 

Fig. 11 Comparison of simulated and observed runoff by SWAT model 
with observational data in the period (a) calibration (1974–1991) and 
(b) verification (1992–2000)
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Table 4 Parameters used in the calibration stage and the optimal values 
of these parameters
Number Parameter name Parameter 

abbreviation
Param-
eter 
range

Opti-
mal 
value

1 SCS runoff curve 
number for mois-
ture condition

CN2 -0.2–0.2 -0.19

2 Base flow alpha 
factor (days)

ALPHA_BF 0.46–1 0.69

3 Groundwater delay 
time (days)

GW_DELAY 30–
254.11

111.9

4 Threshold depth 
of water in the 
shallow aquifer 
required for return 
flow to occur

GWQMN 0.62–
1.88

1.54

5 Soil evaporation 
compensation 
factor

ESCO 0.19–
0.73

0.11

6 Effective hydraulic 
conductivity in 
main channel allu-
vium (mm/hr)

CH_K2 14.31–
104.79

141.25

7 Manning rough-
ness for main 
channel

CH_N2 0.1–0.3 0.24

8 Base flow alpha 
factor for bank 
storage (days)

ALPHA_BNK 0–0.6 0.79

9 Groundwater 
revap coefficient

GW_REVAP 0–0.11 0.09

10 Deep aquifer per-
colation fraction

RCHRG_DP 0.41–1 0.54

11 Soil bulk density SOL_BD 0.82–
2.5

1.02

12 Soil available 
water capacity 
(mm)

SOL_AWC -0.2–
0.16

0.28

13 Soil hydraulic con-
ductivity (mm/hr)

SOL_K 0–0.58 0.52

14 overland manning 
roughness

OV_N 0.16–
0.59

0.35

15 Threshold depth 
of water in the 
shallow aquifer for 
‘revap’ to occur 
(mm)

REVAPMN 0–500 3.92

16 Surface runoff lag 
coefficient (days)

SURLAG 8.47–
25.31

20.05

17 Snowfall tempera-
ture (°C)

SFTMP 0.82–
2.5

4.25

18 Snowmelt base 
temperature

SMTMP -0.2–
0.16

17.21

19 Temperature lapse 
rate(°C/km)

TLAPS 0–0.58 32.92

20 Precipitation alti-
tude gradient (mm 
H2O/km)

PLAPS 0.16–
0.59

20.5

21 plant uptake com-
pensation factor

EPCO 0–500 0.47

22 Maximum canopy 
storage

CANMX 8.47–
25.31

94.17

Table 5 The results of SUFI2 algorithm (t-stat, P-value)
Number Parameter name Parameter 

abbreviation
t-Stat P-Value

1 Deep aquifer perco-
lation fraction

RCHRG_DP 0.06 0.96

2 Precipitation altitude 
gradient (mm H2O/
km)

PLAPS 0.24 0.81

3 Temperature lapse 
rate(°C/km)

TLAPS 0.31 0.76

4 Threshold depth of 
water in the shallow 
aquifer for ‘revap’ to 
occur (mm)

REVAPMN 0.37 0.72

5 Threshold depth of 
water in the shallow 
aquifer required for 
return flow to occur

GWQMN 0.4 0.69

6 Soil evaporation 
compensation factor

ESCO 0.41 0.68

7 Soil hydraulic con-
ductivity (mm/hr)

SOL_K 0.57 0.57

8 Soil available water 
capacity (mm)

SOL_AWC 0.62 0.53

9 overland manning 
roughness

OV_N 0.91 0.37

10 plant uptake com-
pensation factor

EPCO 0.95 0.34

11 Snowmelt base 
temperature

SMTMP 0.98 0.33

12 Soil bulk density SOL_BD 1.05 0.29
13 Base flow alpha fac-

tor for bank storage 
(days)

ALPHA_BNK 1.12 0.27

14 Maximum canopy 
storage

CANMX 1.2 0.23

15 Surface runoff lag 
coefficient (days)

SURLAG 1.4 0.16

16 Manning roughness 
for main channel

CH_N2 1.5 0.13

17 Effective hydraulic 
conductivity in main 
channel alluvium, 
mm/hr

CH_K2 1.52 0.13

18 Groundwater revap 
coefficient

GW_REVAP 1.62 0.11

19 Base flow alpha fac-
tor (days)

ALPHA_BF 1.8 0.07

20 Groundwater delay 
time (days)

GW_DELAY 2.71 0.01

21 Snowfall tempera-
ture (°C)

SFTMP 3.65 0.00

22 SCS runoff curve 
number for moisture 
condition

CN2 30.62 0.00
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while this decrease in winter and spring seasons is much 
longer than the summer and autumn seasons and peaks in 
March. This trend is also true for comparing future runoff 
with observational values. With the difference that only in 
April will there be the maximum reduction. Comparing the 
scenarios with each other, it should be said that in general, 
RCP2.6 scenario in the future periods will show more runoff 
reduction in the future than RCP8.5 scenario. The reason for 
this can be the constant trend of changes in radiative forc-
ing until 2100 in RCP8.5, while changes in radiative forcing 
for RCP2.6 are variable and will increase and then decrease 
until 2050.

The annual changes in runoff simulated with the SWAT 
model relative to the observed values are given in Table 7. 
As shown in Table 7, the annual runoff reduction under 
the RCP2.6 scenario for the future periods 2040–2069 
and 2070–2099 is 84.09% and 82.45%, respectively, and 

which had the lowest t-Stat value and the highest P-value, 
had the least impact on flow.

4.5 Simulation of river flow in future periods

Using the SWAT model, the monthly time series of river 
flow was simulated using future estimated temperature and 
precipitation data using the LARS-WG model. Figure 14 
shows a comparison of the average long-term monthly river 
flow in the future periods 2040–2069 and 2070–2099 for 
RCP2.6 and RCP8.5 scenarios with baseline and observa-
tional values. Also, the values of average long-term runoff of 
observational, baseline, and simulated runoff in future peri-
ods and different scenarios are given in Table 6. According 
to Fig. 14; Table 6, it can be seen that the simulated runoff 
values will decrease in the future periods in both scenarios 
compared to the simulated baseline values in all months, 

Fig. 14 Comparison of monthly 
long-term river flow (runoff) 
in the period 2040–2069 and 
2070–2099 for RCP2.6 and 
RCP8.5 Scenarios with baseline 
and observation values

 

Fig. 13 Sensitivity of parameters in SUFI2 algorithm (t-stat, P-value)
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period (1992–2002) had better performance and therefore 
this model was used to predict future runoff. By comparing 
monthly long-term runoff under the RCP2.6 and RCP8.5 
scenarios in the periods 2040–2069 and 2070–2099 with the 
baseline values, it was found that in all scenarios and future 
periods, the amount of runoff decreased significantly. Also, 
the annual runoff rate will decrease by 84.09%, 82.45, 80.38 
and 81.39%, respectively, compared to the observations for 
the RCP2.6 and RCP8.5 scenarios for the future periods 
2040–2069 and 2070–2099.
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the RCP8.5 scenario for the period 2040–2069, decreases 
by 80.38% and for the period 2070–2099, it decreases by 
81.39%, which is very significant.

5 Conclusion

The present study investigates the effect of climate change 
on surface water resources and analyzes the sensitivity of 
flow parameters of the Sanjabi basin in Kermanshah prov-
ince in Iran. For this purpose, the output of nine AOGCM 
models, including CanESM2, CNRM-CM5, GFDL-
CM3, GISS-E2-H, GISS-E2-R, MIROC5, MIROC-ESM, 
MIROC-ESM-CHEM and MPI-ESM-LR were used. After 
determining the range of climate change scenarios, each 
model was weighted. Then, based on weighting, using the 
Monte Carlo method, 100 samples of the basin’s monthly 
probabilistic distribution functions of temperature and rain-
fall were generated. The LARS-WG model was used for 
downscaling and then temperature and future precipitation 
for the periods 2040–2069 and 2070–2099 were calculated 
under the RCP2.6 and RCP8.5 scenarios.

The SWAT model was then used to simulate surface 
runoff. For the SWAT model, two observational data and 
the NCEP CFSR global database were compared. Both 
models were calibrated and their efficiency was measured. 
With observational data, the model had coefficients of R2, 
RMSE, MAE and NSE in the amount of 63.04%, 5.18 m3/s, 
3.17 m3/s and 0.61 in the calibration period (1971–1990) 
and 56.85%, 5.52 m3/s, 3.49 m3/s and 0.47 in the validation 

Table 6 The average long-term observation, base and future runoff in 2040–2069 and 2070–2099 periods in RCP2.6 and RCP8.5 scenarios (m3/s)
Month Observation Baseline RCP2.6 RCP8.5

2040–2069 2070–2099 2040–2069 2070–2099
Jan 5.16 6.33 0.81 0.97 1.04 1.16
Feb 7.36 7.84 0.96 1.35 1.45 1.47
Mar 15.86 17.37 1.47 2.09 1.93 1.84
Apr 19.81 13.77 1.21 2.62 2.23 3.13
May 11.19 8.78 1.27 1.94 1.94 1.84
Jun 4.20 4.53 1.9 1.16 2.14 1.13
Jul 2.51 3.23 1.32 0.74 0.96 0.74
Aug 1.72 2.4 0.92 0.52 0.7 0.53
Sep 1.37 1.85 0.65 0.4 0.59 0.41
Oct 1.5 1.83 0.73 0.42 0.56 0.49
Nov 2.77 2.79 0.48 0.55 0.73 0.72
Dec 5.17 4.79 0.78 1.04 1.16 1.17

Table 7 The annual changes in simulation runoff relative to the 
observed values (%)
Percentage of runoff changes
RCP2.6 RCP8.5
2040–2069 2070–2099 2040–2069 2070–2099
-84 -82 -80 -81
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